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TCC	   transcripts	   genes	  

Feature	  dimension	   246981	   82741	   28250	  

Average	  #	  of	  non-‐
zero	  entries	   11804	   8655	   6747	  

Supplementary Figure 1: Runtimes of bowtie, kallisto-quant, kallisto-pseudoalign, and
computation of pairwise distance matrices. (a) The runtimes of Bowtie, kallisto with both
pseudoalignment and quantification (kallisto-quant), and kallisto with just pseudoalignment
(kallisto-pseudoalign) were obtained for 200 randomly selected cells from Zeisel et al.’s 3005
mouse brain cell dataset [1] as shown on the left pane. The (extrapolated) runtime of Bowtie was
higher than the runtimes of the two pseudoalignment-based methods. When comparing
kallisto-quant against kallisto-pseudoalign (as shown on the right pane), kallisto-pseudoalign is
slightly faster, saving approximately 5 seconds per cell. As the number of cells scales up to 44, 000
for novel sequencing technologies such as DropSeq, kallisto-pseudoalign will have savings of about
60 hours compared to kallisto-quant and 1.8 years compared to bowtie. (b) The runtimes
obtained for running pairwise distances on the distributions obtained from TCCs, transcriptome
expressions, and gene counting are shown here. These times are shown for Jensen-Shannon
distance and `1 distances. The feature dimension indicated in the table equals the number of
features (either TCC, transcript abundances, or gene abundances) that are non-zero in at least
one of the 3005 samples.
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Supplementary Figure 2: More details on the 7 clusters obtained from affinity clustering in the
data-set of [2]. (a) Shows the diffusion map of cells colored by the labels of the 7 clusters. (b)
Each pie-chart node in the MST shows the distribution of the cells of each cluster in real-time.
The tree on which these are placed corresponds to the pseudotime obtained.
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Supplementary Figure 3: More genes to validate the 3 clusters obtained from Trapnell et al.’s
data-set [2] Shows the distribution of various other genes that are known to be markers of the
three states represented by the three TCC clusters. The patterns discovered here using TCC
closely matched those found by Trapnell et al.
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Supplementary Figure 4: Selecting parameters for affinity propagation on [2]’s gene expression
vectors We note that choosing optimal parameters for affinity propagation requires some
biological intuition. (a) For each of 3 damping parameter values, we swept through multiple
preference parameter values. We looked for a combination of parameters that produced a
reasonable amount of clusters roughly the same size. The left plot show two curves for each
damping parameter: a dotted one indicating the number of cells in the smallest cluster and a solid
one indicating the number of cells in the largest cluster. In the case where we do not know the
correct number of clusters, we would use clusterings immediately before the large spike in number
of clusters (right plot), resulting in about 7 clusters. The plots shown here are generated using
Trapnell et al.’s expression vectors. We also noticed that from empirical testing, varying
parameters in a flat region of the plot resulted in the exact same clusters. (b) There are multiple
combinations of parameters that could generate 3 or 7 clusters. Here we use Trapnell et al.’s
expression vectors to generate two MSTs. Each MST uses one of two combinations of damping
and preference parameters selected based on the plots in (a). Slight tweaking of the preference
parameters can result in an MST with 8 clusters, as shown in the right-most tree. Like we did in
Figure 4, we would collapse the 1-cell cluster into its nearest cluster. Knowing that 3 cell types
exist in the population, we also tried another two combinations of parameters to produce 3
clusters. For easy comparison to the TCC results in the main text, we visualized the clusters with
the diffusion maps of Figure 4d. We see that the cell discussed in Figure 5 (T48 CT G10) still
fails to be classified as a differentiating myoblast. For additional comparison, we computed
another diffusion map using Trapnell et al.’s expression vectors (right-most diffusion map).
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Supplementary Figure 5: Quantifying after clustering to validate clusters obtained. (a) The
expression levels obtained after running kallisto’s EM algorithm on the pooled TCCs of each
cluster. The left pane shows the mean TPMs of the 3 clusters. The right pane shows the mean
TPMs of the 7 clusters overlaid on the MST from Figure 4. We note that these were obtained by
running the EM algorithm 3 times and 7 times, respectively (once for each cluster). We also note
that the TPMs are similar to those of Figure 4d. (b) Here we show an estimate of the number of
cells expressing the each of 3 genes. The expression levels are obtained by randomly sampling 20
cells from each cluster and quantifying them. We note that the numbers obtained are similar to
those of the middle pane Figure 4d.
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Supplementary Figure 6: Comparison of different distance metrics to use to compute pairwise
distances. (a) Shows the t-SNEs obtained when using `1 (Manhattan distance or twice the total
variation distance) and `2 distances (Euclidean distance) instead of Jensen-Shannon distances to
compute pairwise distances between TCC histograms obtained for 3005 mouse brain cells of Zeisel
et al. [1]. The `1 distance seems to maintain the cluster centers to a much larger extent than `2
distances. (b) As the average read coverage of each cell in the dataset decreases from
approximately 627,000 mapped reads, spectral clusterings based on different distance metrics
exhibit varying ability to distinguish neurons from non-neurons. While both `1 distance and
Jensen-Shannon Divergence perform similarly well at high coverage (error rate 5%), the
commonly used `2 distance resulted in significantly worse performance. We note that `2 distance
is known to be a bad metric to use while comparing probability distributions. For the two classes
picked, `1 distances perform better that Jensen-Shannon distance at low coverage.
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Supplementary Figure 7: Comparing alignment-based TCC with pseudoalignment-based TCC
Alignment was performed using HISAT on the mouse transcriptome (GRCm38) in the case of
Zeisel’s dataset and the human transcriptome (GRCh38) in the case of Trapnell’s dataset.
HISAT’s --no-spliced-alignment option was used. TCC vectors can be generated from aligned
reads by simply counting the number of ambiguous reads aligned to each set of transcripts. For
Zeisel et al.’s dataset, HISAT maps 1, 843, 467, 887 reads to 417, 515 equivalence classes, and
kallisto maps 1, 768, 321, 229 reads to 246, 981 equivalence classes. We compare the (a) t-SNE
visualizations on Zeisel et al.’s dataset, (b) clustering accuracies on Zeisel et al.’s dataset, and
(c) runtimes of the two approaches on both Zeisel and Trapnell et al.’s datasets. Overall,
alignment-based TCCs yield slightly better cell-type classification error rates on the Zeisel et al.’s
dataset – at the cost however of a higher computation time.
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Supplementary Figure 8: Selecting parameters for affinity propagation on TCC vectors for
Trapnell et al.’s data-set. (a) For the TCC approach, we performed the same parameter sweep
presented in Supplementary Figure 6, resulting in the plots shown here. Additionally, we highlight
the area of the curves where affinity propagation with a damping value of 0.95 results in 3 clusters.
The default affinity propagation parameters of 0.5 for damping and -0.52, the median of the
similarity matrix, for preference results in 24 clusters, 12 of which have only 1 member. (b) To
test the stability of the clusters across a flat region of the curves, we looked at 3 combinations of
parameters that resulted in 3 clusters when the damping value equals 0.95. The clusterings are
identical, and we see that Cell T48 CT G10 is consistently classified as a differentiating myoblast.
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